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note that the effective fields in (25) depend only on 
differences of displacements, and therefore lead to force 
terms of the same form as the short-range "elastic" 
interactions. Thus the equations of motion of the lattice16 

will be unchanged, and the only effect of the corrections 
we have found to the Lorentz effective field will be to 
change the interpretation of some of the coefficients in 
the equations of motion for the long-wavelength optical 
modes. 

Effective fields for waves of arbitrary wavelength 
have recently been considered by Cochran.17 His results 

16 See, for example, Eq. (3.2) of W. Cochran, in Advances in 
Physics, edited by B. H. Flowers (Taylor and Francis, Ltd. 
London, 1960), Vol. 9, p. 387. 

17 W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963); 

I. INTRODUCTION 

CONSIDERABLE interest has been shown in recent 
years in comparisons of experimental results with 

predictions of the Heisenberg model of magnetism; e.g., 
measurements of the magnetization of a variety of 
magnetically ordered crystals have been made and the 
results interpreted by spin-wave theories of varying 
degrees of sophistication.1 In particular, two nuclear-
magnetic-resonance (NMR) magnetization measure
ments and their interpretations have a bearing on the 
present investigation: (1) The work of Gossard, Jacca-
rino, and Remeika2 (hereafter referred to as GJR) on 

f This work performed under the auspices of the U. S. Atomic 
Energy Commission. 

* Now at Bellcomm, Incorporated, Washington, D. C. 
1 Exhaustive references may be found in the review article of 

P. W. Anderson, Solid State Phys. 14, 99 (1963). 
2 A. C. Gossard, V. Jaccarino, and J. P. Remeika, Phys. Rev. 

Letters 7, 122 (1961). 

are for rigid ions but, if modified to allow for separate 
displacements of the core and one or more electron 
shells, they are equivalent in the long-wavelength limit 
to the results given here. 
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ferromagnetic CrBr3, and (2) the work of Narath3 on 
antiferromagnetic CrCl3. At low temperatures, the 
structures of these crystals are isomorphic,4 and can be 
represented by Fig. 1 (a). In both cases, the strongest 
exchange coupling is the ferromagnetic coupling JT, of 
nearest neighbors in the hexagonal basal plane. The 
interlayer exchange coupling JL is ferromagnetic in 
CrBr3 and antiferromagnetic in CrCl3. 

We have noticed an inconsistency between JT re
ported for CrBr3 and the one reported for CrCi3; that 
is, for CrCl3 the value J r / ^ = 4.5°K obtained via spin-
wave theory is considerably larger than the one deduced 
from the ordering temperature Tc by means of the 
molecular field approximation 

/ r / A = 3 r c / [ 2 2 S ( S + l ) ] , (1.1) 

3 A. Narath, Phys. Rev. Letters 7, 410 (1961); Phys. Rev. 131, 
1929 (1963). 

4 B. Morosin and A. Narath, J. Chem. Phys. 40, 1958 (1964). 
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Nuclear-magnetic-resonance-domain magnetization data for ferromagnetic CrBr3 have been extended 
over the range 1-20°K. Using the low-temperature (<5.25°K) data and Holstein-Primakoff spin-wave 
theory without the usual long-wavelength approximation, we have shown that exchange constants reported 
by Gossard, Jaccarino, and Remeika are in error by about 40%. This error resulted from the long-wavelength 
approximation, which causes, even at temperatures fth the Curie temperature, errors much larger than ex
perimental errors. In the low-temperature range, we have found a 20% range for the values of the exchange 
constants which will explain the experimental results. However, by using spin-wave renormalization tech
niques to interpret the intermediate temperature data, the acceptable range in values for the exchange 
constants is narrowed to less than 2%. We have been able to fit the experimental NMR frequencies, through
out the temperature range of 1-20°K, with the renormalized spin-wave theory. The resulting rms error of 
16.2 kc/sec lies within the mean experimental error, thereby giving experimental verification to the approxi
mations used in developing the spin-wave renormalization. This data fit gives 8.25°K for the intralayer 
exchange constant, 0.497°K for the interlayer exchange constant, and 58.099 Mc/sec for the 0°K, zero-field 
Cr53 resonance frequency. 



A434 H . L . D A V I S A N D A . N A R A T H 

FIG. 1. (a) Crystal structure of CrBr3. (b) Simplified crystal model 
for the Cr3+ ions used in the spin-wave calculations. 

which gives JT/k = 2.2°K. However, for CrBr3 the 
values of JT/k obtained by the two methods are ap
proximately the same, being 5.4 and 4.9°K, respectively. 
The question arises whether this discrepancy is due to 
fundamental differences in the physical properties of 
these crystals or to an incorrect analysis of the data. In 
the analysis of the CrBr3 data the long-wavelength 
approximation to spin-wave theory was used without 
consideration of its effect, while for CrCl3 the effect of 
such an approximation was explicitly considered and 
was found to have a significant influence on the value of 
JT obtained from the experiment. Thus, one of the 
motivations for the present work was to see if the dis
crepancy between the JVs could be removed by a 
reanalysis of the CrBr3 data. We have, therefore, made a 
study of the factors influencing the accuracy which can 
be obtained in the determination of the exchange con
stants from a low-temperature spin-wave analysis of the 
experimental data. We will show in Sec. IV that a cor
rect analysis, in fact, leads to a much larger value for JT 

in CrBr3 than that obtained by GJR. 
A second motivation for this work has been the hope 

that the simple exchange Hamiltonian appropriate for 
CrBr3 would provide a fairly straightforward experi
mental test for the validity of spin-wave renormalization 
procedures.5-7 After reanalyzing the low-temperature 
data, we have therefore applied the concepts of spin-

6 F. Keffer and R. Loudon, J. Appl. Phys. Suppl. 32, 2S (1961). 
6 R. Brout and F. Englert, Bull. Am. Phys. Soc. 6, 55 (1961). 
7 M . Bloch, Phys. Rev. Letters 9, 286 (1962). 

wave renormalization to an interpretation of the data 
obtained at intermediate temperatures where one ex
pects the Holstein-Primakoff8 (hereafter referred to as 
HP) spin-wave theory to break down because of inter
actions between H P spin waves. Spin-wave renormal
ization is an approximate method of taking into account 
interactions between H P spin waves by allowing the 
excitation energy of a given spin wave to change with 
temperature. As is seen in Sec. IV, an explanation of the 
intermediate-temperature data is possible only with 
renormalization, thereby providing experimental veri
fication of the approximations used in the spin-wave 
renormalization. At the same time, we have considered 
whether a wider temperature range than HP spin-wave 
theory allows can yield more accurate Heisenberg ex
change parameters. Again, as Sec. IV will show, this 
expectation is fulfilled. 

In the course of the present work we have extended 
the Cr53 zero-field NMR measurements of GJR over the 
range 1-20 °K; the experimental techniques are dis
cussed in Sec. I I I . The theory required for the analysis 
of the data is discussed in detail in Sec. I I . 

II. THEORY 

Although CrBr3 has the R3 hexagonal layer structure9 

shown in Fig. 1(a), we will follow GJR and approximate 
the Cr3+ lattice by one represented in Fig. 1(b). Such an 
approximation greatly reduces the effort required to 
derive a spin-wave dispersion law which closely re
sembles the true dispersion law for the magnetic col
lective modes of CrBr3 at low temperatures; furthermore, 
the same approximation allows our renormalization 
calculation to proceed in a much more straightforward 
manner. Moreover, such an approximation has more 
justification than that of simplifying the calculations, 
since one expects the intralayer exchange coupling, 
which proceeds by means of superexchange through a 
single Br~ ion, to be much stronger than the interlayer 
exchange coupling which proceeds through two B r - ions. 
This expectation has been verified by GJR who found 
that JT was larger than JL by a factor of six; as we will 
show, a more correct treatment of the theory gives JT 
greater than JL by a factor of 16. Thus, qualitatively, 
experiment and theory interact to provide some self-
consistency to this approximation of the lattice. There
fore, in our theoretical treatment, we have restricted 
ourselves to the model of Fig. 1 (b) and have considered 
only nearest-neighbor couplings between the spins. This 
model has two inequivalent spin sites per unit cell; 
hence, we consider a 2N spin system with periodic 
boundary conditions, composed of two sublattices of N 
spins each. The spin operators corresponding to the 
spins of one sublattice are denoted by R&, while those of 
the other sublattice are denoted by Sy, with | Sy | = | R& | 

8 T . Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940). 
9 A. Braekken, Kgl. Norske Videnskab. Selskab Forh. 5, No. 11 

(1932). 
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= S. Angular momentum is measured in units of fi. 
Acting on each spin is an anisotropy field, denoted by 
HA, which we assume to be the same at the two inequiva-
lent sites and which is directed along the +z direction. 

The Hamiltonian for the above model is 

3C= —2 JT jLsj,o ky-Ky+s 

- g M ^ A ( r ) ( E i 5 / + L ^ ^ ) , (2.1) 

where 5 denotes the vectors from a given spin site to 
nearest-neighbors in the same layer, and 5' denotes the 
vectors to nearest-neighbors in adjacent layers. The 
first sum of (2.1) describes the intralayer Heisenberg 
exchange coupling between nearest neighbors; the 
second and third sums describe the interlayer coupling 
between nearest neighbors in adjacent layers; and the 
last two sums account for the anisotropy. We have ex
plicitly written the anisotropy as a function of the 
temperature T for the following reasons. Spin waves are 
only approximate collective modes for an exchange-
coupled spin system. The concept of spin-wave re-
normalization, which we will apply, allows the spin-
wave energies to have a temperature dependence such 
that these energies more closely resemble the energies of 
the true collective modes which may be excited at a 
given temperature. Since we wish to provide some ex
perimental verification for the approximations used in 
spin-wave renormalization, it is necessary to follow the 
spin system from low temperatures up to about Tc/2. I t 
has been observed10 that the anisotropy field for CrBr3 

decreased by about 30% over this temperature range; 
this variation must be taken into account by any precise 
theory. 

After introducing angular momentum raising and 
lowering operators 

Rk±=Rk*±iRky, 
± _ (2.2) 

we make the following transformation to boson opera
tors11-13: 

5 r = ( 2 5 ) 1 / V , 

S+= ( 2 5 ) ^ ^ - ^ ^ / ( 2 5 ) ] , 

Rk
z=S—b^bk, 

Rir=(2S)^bk\ 

Ru+=(2Syi*lbk-bJbkbk/{2S)-]. 

When the dj and bk operators satisfy the boson commu-

10 J. F. Dillon, J. Appl. Phys. Suppl. 33, 1191S (1962). 
11 S. V. Maleev, Zh. Eksperim. i Teor. Fiz. 33, 1010 (1957) 

[English transl.: Soviet Phys.—JETP 6, 776 (1958)]. 
12 R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 95 (1962). 
« T . Oguchi, Progr. Theoret. Phys. (Kyoto) 25, 721 (1961). 

tation relations 

[bk,bk^~] = bkk>, [tfi,0;' t] = 5Jy, 

C ^ ^ F t ] = [ ^ ^ A 0 = C ^ W t ] = C ^ ^ ] = = 0 , (2.4) 

the angular momentum operators R& and Sy satisfy the 
usual angular momentum commutation relations. Using 
(2.2) and (2.3), we obtain Dyson's14 ideal spin-wave 
Hamiltonian for our CrBr3 model: 

X (Ey flitoy+Z* brfbk) 

— 2JTS iLj^ibj^aj+a^bj+s) 

~2JLSQ2J,8' tfy+s'^i+E&.s' bk+yfbk) 

~2JT E J ' , 8 a^Ujbj+8^bj+8 

+JLj^k,8>(bk+8^bktykbk—bkibkbk+8^bk+8') 

+JT J^jA^j+^a^ajaj+a^bj^bj+sbj^), (2.5) 

with 

Eo= -6JTS2N-ULS2N-2gtJiBHA(T)SN. (2.6) 

Following standard spin-wave theories, we introduce the 
Fourier transformations: 

a . = i V - 1 / 2 E x e x p ( - ^ ^ K , 

a i t = ^ - i / 2 S x e X p ( i j ^ ) a x t , 

£ * = i V - 1 / 2 L x e x p ( - ; k . ^ x , 

^ t = J V - i / 2 £ x e x p ( ; k a ) & x t , 

where the sums are taken over the first Brillouin zone of 
the reciprocal lattice of a sublattice. From (2.4) it is 
seen that the a\ and b\ also obey boson commutation 
relations 

[ahaj~] = P>x,V ] = 5x„, 

Ox,aM] = W^l = C*X^M] = U>\W] = 0 > 

with the a\, ax1* operators commuting with the 6M, bj 
operators. Using (2.7) in (2.5) 

3e=3e0+3Ci, (2.9) 

where 

3Co=Eo+Ex lgfJLBHA(T)+6JTS+4JLS(l-yx')l 

X (a^ax+b^b\)-6JTS Ex(7x&x t0x+Y-xax%), 
(2.10) 

with 

Y x = i E s e x p ( a . 5 ) , (2.11) 

and 

Yx' = i E a ' e x p ( a - 5 ' ) , (2.12) 

*4F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956). 
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while 

5d=N~l Z 5(X!+X2-X3-X4) 
X l , " - , X 4 

X [_2JL (7/—72-/) tfi W0304 

+ 2JL ( 7 / — 72-4O &lt&2t 3̂̂ 4— 6^72-4^1^2^354 

+ 3/^71^1^2^304+3/^7-1^^52^3543 • (2.13) 

Above we have used the notation ah yh etc., instead of 
aM> 7xi> e t c - > s u c n notation will also be used later in the 
paper. 

The diagonalization of 3Co is achieved by applying the 
transformation 

ax = 2-1 /2exp(^x)(ax+/?x), 

a x t = 2 - " 2 exp(-ift0(«xt+j8xt), 

5x=2- 1 / 2exp(-^x)(«x- iSx) , 

5xt=2-1/2exp(^x)(«xt~|Sxt), 
with 

exp(4^x) = 7-x/Tx. (2.15) 

Using (2.14) and (2.8), it is seen that the a and (3 
operators satisfy boson commutation relations: 

[>x,aM
f]= [ / 5 x A t ] = ^ , 

[ ax ,«J = [ a x W t ] = [ / ? x A ] = [ ^ t A t ] = 0 , * 

with the ax, atx* operators commuting with the ̂ , ftj 
operators. Using the transformation (2.14) 3Co goes over 
to its diagonal form 

3C 0 =£o+Zx {gnBHA{T)+6JTS[l- (7x7-x)1/2] 
+ 4 / ^ ( l - 7 x , ) } « x t a x + Z x {gnBHA{T) 

+ 6/rf[l+(7x7-x)1 / 2]+4/L5(l-7x ,)}/5xt/3x.(2.17) 

The quasiparticles represented by (2.17) are H P type 
spin waves and are the usual approximate collective 
modes utilized when one is working at low temperatures; 
i.e., 3Ci is usually neglected at low temperatures. 
Another common approximation made when using 
(2.17) is the long-wavelength approximation, which 
consists of expanding the lower branch of the dispersion 
law in a series in powers of 'X and retaining only the first 
term which goes as X2. 

In Sec. IV we will investigate both the long-wave
length approximation and the neglect of 5Ci. In order to 
investigate the effect of the long-wavelength approxima
tion on the calculated magnetization, we will perform 
the required integration over the first Brillouin zone 
numerically for both spin-wave branches. However, in
vestigation of the effect of neglecting 3Ci is not so simple. 
Since Dyson14 has shown for the cubic lattices that the 
kinematic interaction may be neglected at reasonable 
temperatures, we will assume that the kinematic inter
action may be neglected in our treatment of CrBr3. 

Furthermore, as suggested by Kittel15 and verified by 
Bloch7 for the simple cubic lattice up to at least 
Tc/2, Dyson's results indicate that spin-wave spin-
wave interactions in ferromagnets may be relatively 
weak in this temperature range. In Bloch's treat
ment, interactions were taken into account by re-
normalization of the spin-wave energies. Her renormal-
ization was performed by assuming that all nondiagonal 
terms of the Hamiltonian could be neglected. This 
approximation allowed her to obtain reasonable values 
of Tc for the simple cubic lattice. Thus, one would ex
pect the neglect of the nondiagonal terms of the Hamil
tonian to be valid up to, say, at least Tc/2. Therefore, 
in our treatment of CrBr3 we will restrict ourselves to 
that range and retain only that portion of 3Ci which is 
diagonal in the a, /3 representation. The portion of 3Ci so 
retained will be accounted for in the theory by applying 
a renormalization procedure. 

The part of 3Ci which is diagonal in the a, {3 repre
sentation is 

3Cm= -N-1 ZMM [ (3 / r /2 ){ 1 + 7 2 _ I e x p p i f o - f c ) ] 

- (7i7- i ) 1 / 2 - (727- 2 ) 1 / 2} 

+ / L ( 1 — 7 I ' ) ( 1 — 72 /)]aiW*2 ta2 

-N't Exi.x, [ ( 3 / r / 2 ) { I + 7 2 - 1 exp[2i(02-0i)] 

+ (7i7-i)1/2+(727-2)1/2} 

+ / L ( l - 7 i / ) ( l - 7 2 , ) ] ^ i t ^ 2 t f t 

-N-1 Ex l tx2 [ 3 / r U + ( 7 2 7 - 2 ) 1 / 2 - (7i7-i)1/2 

- ( l / 2 ) 7 2 _ i e x p [ 2 ; ( 0 2 - 0 i ) ] 

- (1/2)71-2 exp[2i(0i-02)]} 

+ 2 / L ( l -7 i , ) ( l -72 / )> i t « i /5 2 t / 3 2 . (2.18) 

The total Hamiltonian which we are now retaining for 
our treatment is 

3Cd=3C0+3Ci<f. (2.19) 

We now apply a renormalization procedure to the sys
tem described by 3Cd, The procedure we use is different 
from the one used by Bloch but the results would be 
the same. Spin-wave renormalization is accomplished 
here by applying the exact relation16,17 

{ [ 3e d A t ] - ^ x t > ^ = 0, (2.20) 

where 0\^ is the creation operator for a true collective 
mode of 3C<*; ̂  is any eigenstate of the system, and ex 
the energy required to excite, above ty, a collective 
mode of wave number A. In our theory, we will ap
proximate tfx1 by either a\^ or /3\t depending on the 
dispersion branch of interest; then, after performing the 
commutator pC^flx1"], w e W1^ replace number operators 
by their thermal expectation values. That is, we assume 
that the \F of (2.20) is not an eigenstate of the system 
but a state which has expectation values for the number 

15 C. Kittel, International Conference on Magnetic Relaxation, 
Eindhoven, July, 1962 (unpublished). 

16 H. Suhl and N. R. Werthamer, Phys. Rev. 122, 359 (1961). 
17 J. Korringa, Phys. Rev. 125, 1972 (1962). 
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operators equal to the thermal expectation values at a 
given temperature T. This assumption gives the same 
renormalization results as the method used by Bloch7; 
but we prefer using the relation (2.20) because it leads 
to a physical interpretation of why renormalization must 
exist. Also, by use of (2.20) it is readily apparent how 
higher orders of the renormalization procedure could 
be derived; i.e., one would use the entire Hamiltonian 
instead of just 3C<z and approximate 0\t by a sum of one 
operator terms, three operator terms, etc., as Korringa17 

has done in his investigation of single excitations above 
the ground state of an antiferromagnet. Using the 
above method, we obtain the following first-order energy 
for the lower branch (lower sign) and the upper branch 
(upper sign): 

«x1
±(r) = {gHBHA(T)+6JTSZl± (yry-i)1/2] 

+ 4 / i £ ( l - 7 i / ) } - ( 3 / r / # ) 
X L x 2 {1T(1/2) 7 2 _ 1 exp[2f ( t o - 0 0 ] 
=F (l/2)7i-2 exp[2i(ftL-02)] 
± (7 i7- i ) 1 / 2 - (Y2Y-2)1/2Xa2 W 
~ (3JT/N)ZM {1± ( V 2 ) Y 2 - I exp[2i(02-01)] 

± (1/2)71-2 exp[2^(01-02)] 
± (7i7-i)1 /2+ (727-2)1/2K/32^2) 
- ( 2 / L / ^ ) ( l - 7 i , ) Z x 2 ( l - 7 2 / ) 

XC<a 2 W+(/3 2 %)]. (2.21) 

In the above the excitations are pure bosons, since we 
are neglecting the kinematic interaction, giving 

(axW)= { e x p [ e x - ( r ) A r ] - l } " 1 , (2.22) 
and 

(/3x t /3x)={expC6X
+(r)Ar]-l}-i . (2.23) 

A numerical solution of (2.21) through (2.23) for 
e\~~(T) and e\+(T) would be extremely tedious, if not 
impossible when varying JT and JL to fit data, because 
of the 

(SJT/N)ZX2 72-1 expZ2i(62-e1)2(a^a2) (2.24) 

type of terms. I t is therefore necessary to investigate 
this term and obtain some simplification. Rewriting 
(2.24) using (2.11) and (2.15) gives 

(3/r/2iV)(7i/7-i)1 / 2 * E a exp(-ih^) 
X [ E x 2 exp(^^ 2 ) (7-2 /72) 1 / 2 {a2W]. (2.25) 

Due to the symmetry of the crystal, the e±(T)J and 
hence (axtax) and (/Sx^x), must contain the 5 in a 
symmetrical fashion; thus, each term in the £ ] 
brackets in (2.25) is equal for each of the 5. So (2.25) 
goes over to 

(SJT/N) (7i7-i)1/2 £x2(727-2)
1/2(<*2 W . (2.26) 

Using (2.26) and similar relations, the approximate 
renormalized energies are 

ex±(r) = ̂ ^ ( ^ ) + 6 / ^ i ( r ) [ l ± ( 7 x 7 - x ) 1 / 2 ] 
+ 4 / ^ 2 ( 2 0 ( 1 - 7 x 0 , (2.27) 

where 

?X(D=l- (1/zsivOE,. ( k W P - (7,7-M)1/2] 
+ ( ^ % ) [ 1 + ( 7 , 7 - M ) 1 / 2 ] } , (2.28) 

and 

UT)=i-(i/2SN)j:,(i-y,')LKK)+(^%)l- (2.29) 
The two implicit equations (2.28) and (2.29) may 

now be solved for § i ( / ) and &(T) as functions of T by 
using an iterative procedure. Details of their numerical 
solution will be given in Sec. IV. The calculation of the 
magnetization of the crystal is then straightforward, 
using standard methods, once £i(T) and £2 CO are 
obtained. The magnetization as a function of T is given 
by 

M ( / ) = M(0)[l-(l/2A r5)Ex(<axW+</3xt/3x))]. (2.30) 

III. EXPERIMENTAL PROCEDURES 

The zero-field Cr53 nuclear resonances were observed 
with a push-pull FM marginal oscillator18 followed by a 
conventional synchronous detection system. Oscillator 
frequencies were measured with a digital counter. The 
nuclear resonances reported here arise from Cr53 nuclei 
situated in the ferromagnetic domains of CrBr3. The 
splitting between the satellites of the quadrupole triplet 
was found to be 590zb4 kc/sec, independent of tempera
ture. The experimental frequencies given in Table I 
correspond to the § <-» — \ transition. 

Samples were prepared by slow vacuum sublimation 
(800°C) of material obtained from the high-temperature 
bromination of 99.99% chromium metal. The sublima
tion product consisted of large ( ~ | in. diam) but very 
thin flakes. These flakes were carefully loaded into flat-
bottomed Lucite sample holders of ^ 3 cm3 volume. 

Temperatures of 1-4 and 14-20°K were obtained 
with liquid-helium and liquid- (equilibrium) hydrogen 
baths, respectively. Constant temperatures were main
tained by regulating the bath pressure with a manostat. 
Temperature measurements were based on the appro
priate vapor-pressure scales. In the temperature range 
4-14°K the sample was contained in a vacuum-jacketed 
heat-leak chamber which was immersed in a 4°K He 
bath. In this range the sample temperature was meas
ured with germanium resistance thermometers19 and 
temperature regulation was achieved by manual control 
of the power input to a heater. The germanium ther
mometers were calibrated by us against the ac magnetic 
susceptibility of chromium-methylammonium alum. 
Our temperature measurements have an estimated 
maximum error of 0.01 °K below 4°K and 0.02°K 
above 4°K. 

IV. NUMERICAL RESULTS 

In Sec. I I we have discussed a renormalization pro
cedure, leading to a relation for the magnetization of 

18 R. G. Shulman, Phys. Rev. 121, 125 (1961). 
19 Texas Instruments, Inc., Type 104-A. 
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TABLE I. A comparison of the experimental results and the best 
theoretical fit obtained in the present investigation for the 
Cr53 NMR zero-field frequencies. The best theoretical fit is for 
a renormalized spin-wave theory with J rr/£ = 8.25°K, Jhlk 
= 0.497 °K, z/(0) =58.099 Mc/sec, and a temperature-dependent 
anisotropy as explained in the text. The difference between theory 
and experiment gives a rms deviation of 16.2 kc/sec. £i(T) is the 
intralayer renormalization constant, and &(T) the interlayer 
renormalization constant. 

Theory 
minus 

Experi- Best experi
ment theory ment 

T(°K) 

1.44 
1.58 
1.74 
1.86 
2.01 
2.31 
2.66 
3.17 
4.02 
4.05 
4.12 
4.36 
4.57 
4.90 
4.94 
5.25 
5.58 
5.91 
6.14 
6.67 
6.97 
7.50 
7.98 
8.30 
8.75 
8.87 
9.17 
9.63 
9.92 
10.20 
10.73 
11.08 
11.16 
11.64 
11.91 
12.13 
12.54 
12.90 
13.22 
13.34 
13.69 
14.00 
14.09 
14.60 
15.06 
15.44 
15.93 
16.59 
17.13 
17.58 
18.07 
18.80 
19.17 
19.68 

(Mc/sec) 

58.032 
58.016 
57.993 
57.978 
57.956 
57.905 
57.837 
57.719 
57.497 
57.491 
57.471 
57.402 
57.336 
57.226 
57.214 
57.113 
56.978 
56.860 
56.767 
56.553 
56.430 
56.198 
55.993 
55.837 
55.610 
55.554 
55.391 
55.158 
54.944 
54.832 
54.544 
54.295 
54.257 
53.969 
53.789 
53.661 
53.386 
53.156 
52.943 
52.873 
52.651 
52.435 
52.374 
52.010 
51.680 
51.382 
51.046 
50.548 
50.102 
49.732 
49.299 
48.696 
48.370 
47.856 

(Mc/sec) 

58.036 
58.020 
57.999 
57.983 
57.960 
57.910 
57.842 
57.728 
57.501 
57.493 
57.472 
57.399 
57.332 
57.223 
57.210 
57.102 
56.983 
56.858 
56.768 
56.553 
56.425 
56.191 
55.969 
55.816 
55.594 
55.534 
55.381 
55.139 
54.984 
54.828 
54.524 
54.319 
54.271 
53.979 
53.812 
53.673 
53.411 
53.176 
52.963 
52.882 
52.643 
52.429 
52.366 
52.005 
51.670 
51.389 
51.018 
50.506 
50.085 
49.711 
49.303 
48.680 
48.357 
47.905 

(kc/sec) 

4 
4 
6 
5 
4 
5 
5 
9 
4 
2 
1 

-3 
-4 
-3 
-4 
-11 

5 
-2 
1 
0 

-5 
-7 
-24 
-21 
-16 
-20 
-10 
-19 
40 
-4 
-20 
24 
14 
10 
23 
12 
25 
20 
20 
9 

-8 
-6 
-8 
-5 
-10 

7 
-28 
-42 
-17 
-21 
4 

-16 
-13 
49 

Si(T) 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9999 
0.9998 
0.9996 
0.9996 
0.9996 
0.9995 
0.9994 
0.9993 
0.9992 
0.9991 
0.9989 
0.9987 
0.9986 
0.9982 
0.9980 
0.9975 
0.9970 
0.9967 
0.9962 
0.9961 
0.9957 
0.9951 
0.9947 
0.9943 
0.9935 
0.9929 
0.9928 
0.9919 
0.9914 
0.9910 
0.9902 
0.9895 
0.9888 
0.9885 
0.9877 
0.9870 
0.9868 
0.9856 
0.9844 
0.9834 
0.9820 
0.9801 
0.9783 
0.9771 
0.9754 
0.9729 
0.9716 
0.9697 

b(T) 

1.0000 
0.9998 
0.9996 
0.9994 
0.9992 
0.9988 
0.9982 
0.9970 
0.9946 
0.9945 
0.9942 
0.9934 
0.9926 
0.9913 
0.9912 
0.9898 
0.9884 
0.9868 
0.9857 
0.9830 
0.9813 
0.9783 
0.9753 
0.9733 
0.9703 
0.9695 
0.9675 
0.9642 
0.9621 
0.9599 
0.9558 
0.9530 
0.9523 
0.9483 
0.9460 
0.9440 
0.9404 
0.9371 
0.9341 
0.9330 
0.9296 
0.9266 
0.9257 
0.9206 
0.9159 
0.9119 
0.9066 
0.8993 
0.8925 
0.8879 
0.8820 
0.8730 
0.8684 
0.8618 

CrBr3, which, we feel, should be reasonably accurate up 
to about one-half the Curie temperature. The theory 
developed there will now be used to interpret the experi
mental results of the preceding section. First, the rela

tions (2.28) and (2.29) for the renormalization con
stants are written in a form more suitable for numerical 
evaluation by changing the sums to integrals over the 
first Brillouin zone; also, a change of variables has been 
made and S set equal to §, its value for the CrBr3 case: 

/•2r pi-K—y /*T 

^(T) = l- (4/72TT3) / dy dx dz 

Jo Jo Jo 

X {[1 -f(x,y)-]{expi:e-(x,y,z) /kf]-11"1 

+Ll+f(x,y)^{exple+(x,y,Z)/kT-]-l}~1}, (4.1) 
and 

/*2TT /•47T— y fir 

£2(r) = l-(4/727r3) / dy dxl dz(l-cosz) 
Jo Jo Jo 

X{{exp[«- (* , y > 2) /*r ] - l} -» 

+ {exp££*-(x,y,z)/kTl-lh1}, (4.2) 
where 

eHx,y,z) = gvBHA(T)+9Mi(T)tl±f(x,y)l 

+ 6 / L £ 2 ( r ) [ l - c o s s ] , (4.3) 

and 

/ f e y ) = | [ 3 + 4 cos(x/6) cos(y/2)+2 cos(tf/3)]1/2. (4.4) 

These equations, for a given T, JT, and JL set, were 
solved for %i(T) and ^(T) by the following iterative 
process. First, we assumed a value for &(T) ( < 1 de
pending upon any prior knowledge about the T, JT, and 
JL set), and then solved (4.1) for %i(T); this value for 
£i(J) was then used to solve (4.2) for ^(T), which was 
then used to solve (4.1) for %i(T), etc. The iterative 
process was terminated when both £i(T) and ^(T) were 
found to be consistent within ±0.0005. At any given 
step of the process there were two roots for %i(T); how
ever, we have restricted ourselves to the root which 
makes the renormalization process continuous with H P 
spin-wave theory at low temperatures. The theoretical 
NMR frequency v{T) for a given T, JTi and JL set is 
then calculated by using the self-consistent %i(T), &(T) 

set in 

v(T) = v{0) l -(4/727T8) / dy dxl dz 
L Jo Jo Jo 

X { { e x p C ^ ( ^ , » ) / * r ] - l } - i 

+ {exp[c+(a ; ,y , s ) /*r ] - l j - i} ] . , ( 4 > 5 ) 

which is obtained from (2.30) by assuming the hyperfme 
coupling constant of the Cr3+ ion does not appreciably 
change over the temperature range for our experimental 
results of Table I. Although K0) = 58.096±0.010 
Mc/sec was previously determined2 by extrapolation of 
the experimental data, we will vary v(0) within the error 
limits in the present investigation in attempting least-
squares fits to the data. 
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FIG. 2. The difference between 
experimental and theoretical Cr53 

NMR zero-field frequencies as a 
function of temperature using Jr/k 
= 5.44°K, 7 L A = 0 .88°K, and v(0) 
= 58.096 Mc/sec. Curves 1 and 2 are 
for a renormalized spin-wave theory 
with, respectively, HA(T) =6850 Oe 
independent of temperature, and 
HA(T) having the temperature varia
tion explained in the text. Curves 3 
and 4 are for HP spin-wave theory 
with, respectively, HA(T) as in 1 
and 2. 
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In fitting their data, GJR not only neglected 3Ci but 
also used only the lower spin-wave branch in their 
calculations; furthermore, they adopted the long-wave
length approximation for the transverse excitations to 
obtain a theoretical expression for the magnetization. In 
this manner, they obtained a series expansion in T for 
the magnetization with the leading temperature-de
pendent term going as T3/2, as for a typical three-
dimensional Heisenberg ferromagnet. Their justification 
for this procedure was probably that the magnetization 
data went approximately as T3/2, with the observed 
deviation from the Tzl2 law being explainable by the 
T5/2 term and by the exponential weighting factors con
taining the anisotropy. By restricting their analysis to 
the T3/2 and T5/2 terms, weighted by the exponential 
factors, they were able to fit their data and obtain 
values for JT and /z,. As mentioned in Sec. I, we have 
had some doubt about the accuracy of the resulting ex
change constants; thus, we want to investigate the 
approximations used in their treatment. In the follow
ing, we are going to investigate both the long-wave
length approximation and the neglect of 3Ci. 

In some of our calculations we have explicitly con
sidered the temperature variation of the anisotropy 
given by HA(T) = 2K(T)/M(T). The anisotropy con
stant K(T) was obtained from the measurements of 
Dillon,10 while the magnetization M(T) was taken from 
the experimental NMR data obtained in the present 
investigation. From the graph given by Dillon we ob
tained for 0°K< T< 10°K 

K(T)X10~* (erg/cm3) = 9.56-0.104r-0.0037r2, (4.6) 

and for 10oK<F<20oK 

K(T)X10~5 (erg/cm3)- 11.05-0.29T. (4.7) 

For M(T) we have taken 

M(r)=jf(o){i-CKo)-Kr)]A(o)>; (4.8) 

the v(T) are the observed Cr53 zero-field NMR fre
quencies, and M(0) was adjusted to give HA(0) 
= 6850 Oe (the value used by GJR). 

The first attempt to fit the experimental data with 
(4.1) through (4.5) was made with /r/& = 5.44°K, JL/k 
= 0.88°K, and v (0) = 58.096 Mc/sec, as previously given 
by GJR. Two cases were calculated using these parame
ters : (a) HA(T) = 6850 Oe and constant throughout the 
temperature range; (b) # A ( 0 ) = 6850 Oe and having a 
temperature variation as explained above. The differ
ence between the experimental results and the theo
retical values so calculated are given in Fig. 2 as curves 1 
and 2, respectively. As is seen, this attempt to fit the 
intermediate temperature data led to absolutely no 
success. It was then decided to reinvestigate just the 
low-temperature data by using HP spin-wave theory 
[i.e., Eq. (4.5) with J1(r) = f2(r) = l ] but without 
invoking the long-wavelength approximation. Using the 
same JT, J L, V(0), and cases (a) and (b) for HA(T), we 
obtained curves 3 and 4, respectively, of Fig. 2. For 
example, it was found here that the theoretical results 
for r=5.25°K were 133 kc/sec lower than experiment 
for HA(T) of case (a), and 153 kc/sec lower for HA(T) 
of case (b). Furthermore, for J ,= 4.02°K and the same 
J's, theory was 56 kc/sec lower for case (a), and 67 
kc/sec lower for case (b). To give an idea of the effect of 
renormalization at these temperatures, the renormaliza-
tion process of Eqs. (4.1)-(4.5) would further lower the 
NMR frequencies by about 6 kc/sec at 5.25°K, and by 
about 2 kc/sec at 4.02 °K. 

It is seen from the preceding paragraph that the long-
wavelength approximation introduces considerable error 
in trying to obtain exchange constants from experiment, 
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FIG. 3. The difference between the 
best theoretical fit and other theo
retical Cr53 NMR zero-field frequen
cies as a function of temperature using 
JT/k = S.25°K, JL/k = 0A97°K, and 
v(0) =58.099 Mc/sec. The best theo
retical fit, represented by the abscissa, 
is for a renormalized spin-wave theory 
and a temperature dependent anisot-
ropy as explained in the text. The ex
perimental NMR frequencies are rep
resented by the scatter about the 
abscissa. Curves a and b are for the 
HP spin-wave theory with, respec
tively, HA(T) having the temperature 
variation explained in the text, and 
HA{T) =6850 Oe independent of tem
perature. Curve c is for a renormalized 
spin-wave theory with HA(T) =6850 
Oe independent of temperature. 

20 
TCK) 

even for temperatures of the order of \th the Curie tempera
ture. Thus, our original doubt in the exchange constants 
quoted by GJR has been verified. To obtain exchange 
constants more descriptive of the Heisenberg model, it 
became necessary to refit the low-temperature data 
(<5.25°K). This was done by first using H P spin-wave 
theory but applying minor renormalization corrections 
(0 to 6 kc/sec, depending on temperature) which remain 
constant over a wide range of the J ' s . Also, in this 
procedure we used HA(T) as described by (4.6)-(4.8). 
I t was found that a fit to the data, within ± 10 kc/sec, 
could be obtained for 8 .0 o K</r /&<9 .7°K and with 
0.536°K>/ j L /^>0.360°K, depending on the value 
of J r . 

The higher temperature data were next included in 
the interpretation to see if the above range of J's would 
explain the data, thereby hoping to give some experi
mental verification of the approximations used in de
veloping the renormalization theory of Sec. I I . At the 
same time, it was hoped that the high temperature 
results would help narrow the range of the / ' s obtained 
at the lower temperatures. Using (4.1) through (4.5) 
and HA(T) as explained by (4.6)-(4.8), it was found 
that we could fit the entire temperature range of our 
data with an rms error of 16.2 kc/sec with Jr/k = 8.25°K 
and JL/^ — 0.497 °K. The rms error lies within our ex
perimental uncertainty. I t is to be emphasized that 
considerable20 computer time was required to obtain 
this fit, and that an exhaustive least squares analysis in 
the neighborhood of these / ' s would therefore be 
prohibitive. However, using some selected tempera-

20 Approximately 20 h of a Control Data-1604 computer were 
required for the data reduction necessary for the present in
vestigation. 

tures, the / plane in the neighborhood of these values 
has been investigated, such that one can assign reason
able error limits to the J's. Our feeling is that for the 
CrBr3 Heisenberg model described by (2.1) one must 
assign 

J rr/* = 8.2Sd=0.10°K, 

7 ^ = 0.497=F0.013°K, (4.9) 

K0) = 58.099±0.006 Mc/sec. 

Thus, it is seen that using the intermediate-temperature 
data does help narrow the range of J ' s over which a 
theoretical fit to the experimental data can be obtained. 

A comparison of the experimental data and the best 
theoretical fit, along with the £i(T)'s obtained for such 
a fit, is given in Table I. From Fig. 3, where we have 
used the parameters of (4.9), one may see the effect of 
renormalization on the NMR frequency. The abscissa 
represents the best fit to the data, as described above, 
with the experimental points represented by scatter 
about the abscissa. Curve a represents the difference 
between the best fit and HP spin-wave theory with 
HA(T) having the temperature variation described by 
(4.6)-(4.8). Curve b is the deviation from the best fit for 
a H P spin-wave theory with HA(T) = 6850 Oe and 
constant with temperature. Finally, curve c represents 
the deviation from the best fit for a renormalized theory 
with HA (T) = 6850 Oe and constant with temperature. 

V. DISCUSSION 

The experimental determination of exchange parame
ters is of particular importance in the study of differ
ences in magnetic properties of related compounds such 
as CrCl3 and CrBr3. In principle, the most accurate 
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method of determining these constants consists of the 
spin-wave analysis of magnetization data. Unfortu
nately, the theoretical fits which are obtained in this 
way often lack uniqueness if more than one parameter 
has to be determined. We have shown, for example, that 
the long-wavelength approximation to HP spin-wave 
theory is valid over such a limited temperature range 
that an accurate two parameter fit to the CrBr3 data is 
impossible. A similar conclusion has been reached in the 
study of CrCl3.

3 In the case of CrBr3, even the exact 
application of HP spin-wave theory to the low-tempera
ture measurements defines the appropriate exchange 
parameters only in an approximate way. The sensitivity 
of the theoretical fit can be improved by increasing the 
experimental accuracy or by extending the temperature 
range over which the theory is valid. In the present 
study we have taken the latter approach. 

We have applied renormalization techniques to the 
calculation of the collective mode spectrum of the CrBr3 
spin system in order to take account of interactions be
tween HP spin waves which are known to become im
portant at sufficiently high temperatures. The resulting 
temperature-dependent spin-wave solution to the simple 
Heisenberg exchange Hamiltonian accurately accounts 
for our experimental observations over the range 1-
20°K. We believe that the close agreement between 
theory and experiment provides strong justification for 
the approximations invoked in the renormalization pro
cedure. By extending the experimental range to 20 °K 
(^Tc/2) we have greatly reduced the uncertainty in the 
exchange parameters obtained from the NMR meas
urements. 

The present method is quite adequate for the determi
nation of two interaction constants for an exchange-
coupled spin system. The extension to a greater number 
of unknown parameters, however, presently appears to 
be unfeasible. The computer time required to obtain a 
fit would become prohibitively lengthy. Moreover, the 
rapid loss of uniqueness in the fit which is expected to 
result from increasing the number of variables in the 
theory imposes a fundamental limitation on the amount 
of information which can be obtained from the measure

ment of a single magnetic property. In the present case, 
we were fortunate to have available an independent 
measurement of HA(0) and its temperature dependence. 
The application of the present techniques to obtain a 
single exchange parameter and HA(0) for CrCl3 will be 
given elsewhere.21 

The value of JT obtained here for CrBr3 is generally 
consistent with the known value of TC(37°K).22 The 
nearly two-dimensional character of the CrBr3 spin 
system combined with the low coordination number of 
its honeycomb lattice is expected to result in an un
usually low Tc in relation to the exchange energy. For 
example, Brown and Luttinger23 using the Kramers-
Opechowski method have calculated transition tempera
tures (for J/k = S.2°K and 5=1) of approximately 37 
and 33 °K for the two-dimensional ferromagnetic tri
angular (2=6) and square (2=4) lattices, respectively. 
The honeycomb (2=3) lattice should yield an even 
lower value of T€. The observed transition temperature 
is somewhat higher because of the presence of anisotropy 
and the weak interlayer coupling; it falls lower, how
ever, than predicted by simple molecular-field theory 
(62 °K). It appears that the present method is of 
particular value when the spin system has a pronounced 
one- or two-dimensional character. In cases of that type, 
application of the molecular-field model leads to large 
errors in the evaluation of the appropriate exchange 
constants. Examples, in addition to CrBr3, are CrCl3 

which approximates a two-dimensional ferromagnet 
even more strongly than does CrBr3, and perhaps 
CuCl2*2H20 which resembles a linear antiferromagnet. 
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